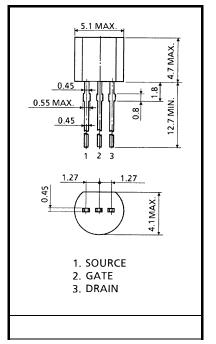


## **TIGER ELECTRONIC CO.,LTD**

Silicon N Channel Junction FET



## 2SK30ATM


Low Noise Pre-Amplifier, Tone Control Amplifier and DC-AC High Input Impedance Amplifier Circuit Applications

- High breakdown voltage: V<sub>GDS</sub> = -50 V
- High input impedance:  $I_{GSS} = -1 \text{ nA} (max) (V_{GS} = -30 \text{ V})$
- Low noise: NF = 0.5dB (typ.)

 $(V_{DS} = 15 V, V_{GS} = 0, R_G = 100 k\Omega, f = 120 Hz)$ 

## Absolute Maximum Ratings (Ta = 25°C)

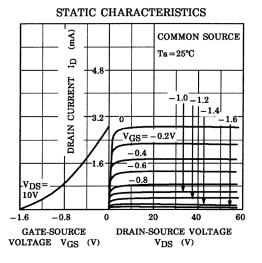
| Characteristics           | Symbol           | Rating  | Unit |
|---------------------------|------------------|---------|------|
| Gate-drain voltage        | V <sub>GDS</sub> | -50     | V    |
| Gate current              | lG               | 10      | mA   |
| Drain power dissipation   | PD               | 100     | mW   |
| Junction temperature      | Тј               | 125     | °C   |
| Storage temperature range | T <sub>stg</sub> | -55~125 | °C   |

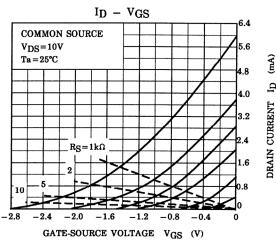


Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

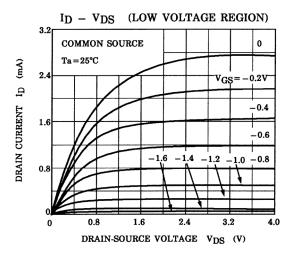
Please design the appropriate reliability upon reviewing the

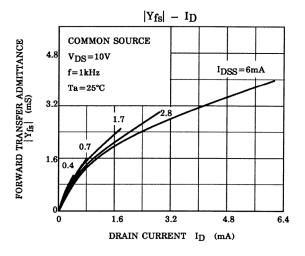
Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

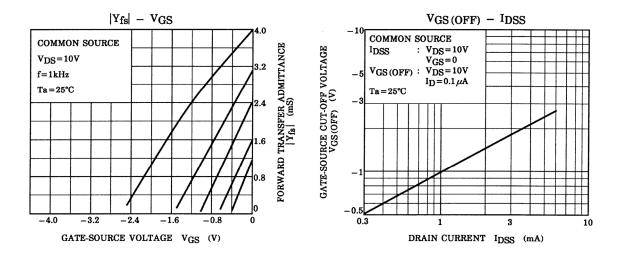

## **Electrical Characteristics (Ta = 25°C)**


| Characteristics              | Symbol                     | Test Condition                                                                     | Min  | Тур. | Max  | Unit |
|------------------------------|----------------------------|------------------------------------------------------------------------------------|------|------|------|------|
| Gate cut-off current         | I <sub>GSS</sub>           | $V_{GS}=-30~V,~V_{DS}=0$                                                           | —    | _    | -1.0 | nA   |
| Gate-drain breakdown voltage | V (BR) GDS                 | $V_{DS} = 0, I_G = -100 \ \mu A$                                                   | -50  |      | _    | V    |
| Drain current                | I <sub>DSS</sub><br>(Note) | $V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0$                                        | 0.3  | _    | 6.5  | mA   |
| Gate-source cut-off voltage  | V <sub>GS (OFF)</sub>      | $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 0.1 \mu\text{A}$                           | -0.4 | _    | -5.0 | V    |
| Forward transfer admittance  | Y <sub>fs</sub>            | $V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ kHz}$             | 1.2  | _    | _    | mS   |
| Input capacitance            | C <sub>iss</sub>           | $V_{GS} = 0, V_{DS} = 0, f = 1 \text{ MHz}$                                        | _    | 8.2  | _    | pF   |
| Reverse transfer capacitance | C <sub>rss</sub>           | $V_{GD} = -10 \text{ V}, \text{ V}_{DS} = 0, \text{ f} = 1 \text{ MHz}$            | _    | 2.6  | _    | pF   |
| Noise figure                 | NF                         | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0<br>R <sub>G</sub> = 100 kΩ, f = 120 Hz | _    | 0.5  | 5.0  | dB   |

Note: I<sub>DSS</sub> classification R: 0.30~0.75, O: 0.60~1.40, Y: 1.20~3.00, GR: 2.60~6.50

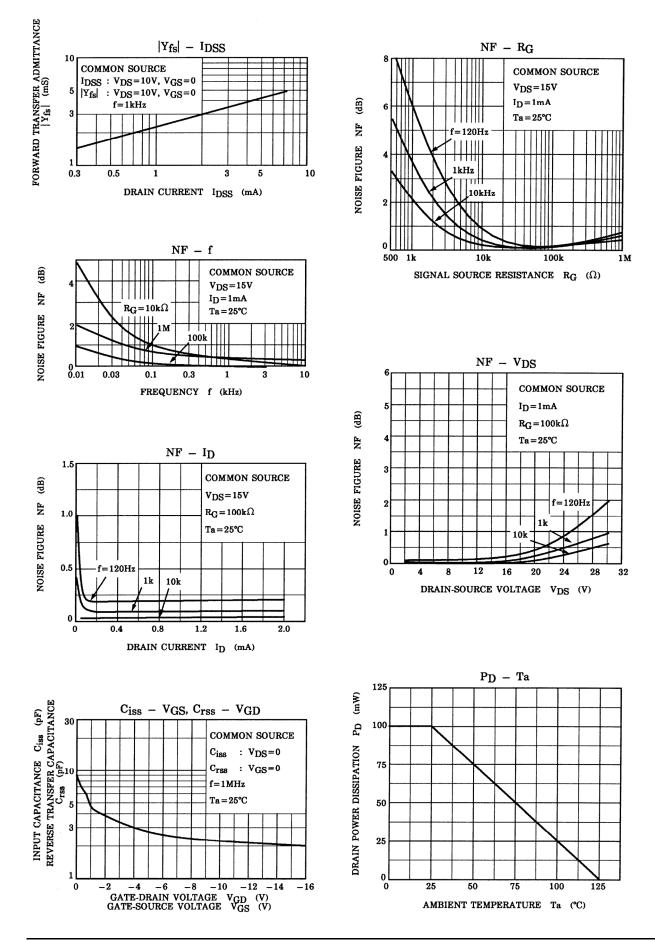

Unit: mm






ď DRAIN CURRENT










**TIGER ELECTRONIC CO.,LTD** 

